Refining the Notions of Depth and Density in WordNet-based Semantic Similarity Measures
نویسندگان
چکیده
We re-investigate the rationale for and the effectiveness of adopting the notions of depth and density in WordNet-based semantic similarity measures. We show that the intuition for including these notions in WordNet-based similarity measures does not always stand up to empirical examination. In particular, the traditional definitions of depth and density as ordinal integer values in the hierarchical structure of WordNet does not always correlate with human judgment of lexical semantic similarity, which imposes strong limitations on their contribution to an accurate similarity measure. We thus propose several novel definitions of depth and density, which yield significant improvement in degree of correlation with similarity. When used in WordNet-based semantic similarity measures, the new definitions consistently improve performance on a task of correlating with human judgment.
منابع مشابه
Automatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملDistributional Measures of Semantic Distance: A Survey
The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملA Review of Semantic Similarity Measures in WordNet
Semantic similarity has attracted great concern for a long time in artificial intelligence, psychology and cognitive science. In recent years the measures based on WordNet have shown its talents and attracted great concern. Many measures have been proposed. The paper contains a review of the state of art measures, including path based measures, information based measures, feature based measures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011